
From: Dang, Thinh
To: Lichtinger, Jacob T. (Fed)
Cc: Dang, Thinh H. (Fed); Thinh Dang - thinh@gwu.edu; Apon, Daniel C. (Fed)
Subject: Re: Kyber Script
Date: Friday, October 22, 2021 3:43:22 PM

chis_h = {}
#sum = 0
for p in hammer_pattern:
 chis_h[p] = hammer_law(chis, p)
 #sum += hammer_pattern[p]

This seems a nicer way to achieve the same effect.

hammer_bits = len(hammer_pattern)

We want the number of hammered coeffs, not necessarily bits. One coefficient can be
hammered in multiple bits. So n_hammer_coefs = sum(hammer_pattern.values()).

Also, is there a reason we are using reduce instead of iter_law_convolution for the
hammered bits?

iter_law_convolution computes the sum of i.i.d. B3 is a list of independent but not identical
distributions.

For the adversarial DFR, I think you can construct chie_a, chie_na, chiRe_a, chiRe_na like
before. Then

B3 = {}
if honest:
 for p in hammer_pattern:
 B3[p] = iter_law_convolution(law_product(chis_h[p], chiRe), hammer_pattern[p])
else:
 for p in hammer_pattern:
 if p >= 0:
 B3[p] = iter_law_convolution(law_product(chis_h[p], chiRe_a), hammer_pattern[p])
 else:
 B3[p] = iter_law_convolution(law_product(chis_h[p], chiRe_na), hammer_pattern[p])

I wanted to modularize the computation of adversarial DFR a bit by specifying as input how
the adversary wants to sample e_1 (chie_a in the script) depending on how a coef is
hammered. This input is called adv_filter and =threshold_law by default, which selects +/- 2
or higher.

Oh instead of having B3 structured like that, use the convolution law to combine them in the

mailto:thinh@email.gwu.edu
mailto:jacob.lichtinger@nist.gov
mailto:thinh.dang@nist.gov
mailto:thinh@gwu.edu
mailto:/o=ExchangeLabs/ou=Exchange Administrative Group (FYDIBOHF23SPDLT)/cn=Recipients/cn=2672301df8fc4bc09688ebc092cf0741-Apon, Danie

for loop:

You're correct.

On Fri, Oct 22, 2021 at 12:06 PM Lichtinger, Jacob T. (Fed) <jacob.lichtinger@nist.gov>
wrote:

Oh instead of having B3 structured like that, use the convolution law to combine them in the
for loop:

B3 = {0: 1.}
if honest:
 for p in hammer_pattern:
 D = iter_law_convolution(law_product(chis_h[p], chiRe), hammer_pattern[p])
 B3 = law_convolution(B3, D)
else:
 for p in hammer_pattern:
 if p >= 0:
 D = iter_law_convolution(law_product(chis_h[p], chiRe_a), hammer_pattern[p])
 else:
 D = iter_law_convolution(law_product(chis_h[p], chiRe_na), hammer_pattern[p])
 B3 = law_convolution(B3, D)

From: Lichtinger, Jacob T. (Fed) <jacob.lichtinger@nist.gov>
Sent: Friday, October 22, 2021 11:56 AM
To: Dang, Thinh H. (Fed) <thinh.dang@nist.gov>; Thinh Dang - thinh@gwu.edu <thinh@gwu.edu>;
Apon, Daniel C. (Fed) <daniel.apon@nist.gov>
Subject: Re: Kyber Script

For the adversarial DFR, I think you can construct chie_a, chie_na, chiRe_a, chiRe_na like
before. Then

B3 = {}
if honest:
 for p in hammer_pattern:
 B3[p] = iter_law_convolution(law_product(chis_h[p], chiRe), hammer_pattern[p])
else:
 for p in hammer_pattern:
 if p >= 0:
 B3[p] = iter_law_convolution(law_product(chis_h[p], chiRe_a), hammer_pattern[p])
 else:
 B3[p] = iter_law_convolution(law_product(chis_h[p], chiRe_na), hammer_pattern[p])

mailto:jacob.lichtinger@nist.gov
mailto:jacob.lichtinger@nist.gov
mailto:thinh.dang@nist.gov
mailto:thinh@gwu.edu
mailto:thinh@gwu.edu
mailto:daniel.apon@nist.gov

I think that should work?

From: Lichtinger, Jacob T. (Fed)
Sent: Friday, October 22, 2021 11:40 AM
To: Dang, Thinh H. (Fed) <thinh.dang@nist.gov>; Thinh Dang - thinh@gwu.edu <thinh@gwu.edu>;
Apon, Daniel C. (Fed) <daniel.apon@nist.gov>
Subject: Kyber Script

Hi,

I think I see where a problem is happening in the script.

Line 28: chis_h = [hammer_law(chis, p) for p in hammer_pattern]

Once chis_h is built, it is unclear which p corresponds to which distribution. I am assuming
that hammer_pattern is a dictionary with keys p (tampered bit value like 32 or 64) and the
value at p is the number of bits flipped for that p. I would suggest:

chis_h = {}
#sum = 0
for p in hammer_pattern:
 chis_h[p] = hammer_law(chis, p)
 #sum += hammer_pattern[p]
hammer_bits = len(hammer_pattern)

Also, is there a reason we are using reduce instead of iter_law_convolution for the
hammered bits? If not, I would change the B3 calculations to

B3 = {}
if honest:
 for p in hammer_pattern:
 B3[p] = iter_law_convolution(law_product(chis_h[p], chiRe), hammer_pattern[p])

I need to think about the else case more.

Thoughts?

mailto:thinh.dang@nist.gov
mailto:thinh@gwu.edu
mailto:thinh@gwu.edu
mailto:daniel.apon@nist.gov

